Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
FASEB J ; 37(11): e23225, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855708

RESUMO

Pulmonary fibrosis (PF), which is caused by continuous alveolar epithelial cell injury and abnormal repair, is referred to as a difficult disease of the lung system by the World Health Organization due to its rapid progression, poor prognosis, and high mortality rate. However, there is still a lack of ideal therapeutic strategies. The peptide DR8 (DHNNPQIR-NH2 ), which is derived from rapeseed, exerted antifibrotic activity in the lung, liver, and kidney in our previous studies. By studying the structure-activity relationship and rational design, we introduced an unnatural hydrophobic amino acid (α-(4-pentenyl)-Ala) into DR8 and screened the novel peptide DR4penA (DHNα-(4-pentenyl)-APQIR-NH2 ), which had higher anti-PF activity, higher antioxidant activity and a longer half-life than DR8. Notably, DR4penA attenuated bleomycin- and paraquat-induced PF, and the anti-PF activity of DR4penA was equivalent to that of pirfenidone. Additionally, DR4penA suppressed the TGF-ß/Smad pathway in TGF-ß1-induced A549 cells and paraquat-induced rats. This study demonstrates that the novel peptide DR4penA is a potential candidate compound for PF therapy, and its antifibrotic activity in different preclinical models of PF provides a theoretical basis for further study.


Assuntos
Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Paraquat/efeitos adversos , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Transdução de Sinais
2.
Braz. J. Pharm. Sci. (Online) ; 59: e22476, 2023. graf
Artigo em Inglês | LILACS | ID: biblio-1505847

RESUMO

Abstract The aim of the present study was to investigate the effect of swertiamarin (STM) in attenuating paraquat (PQ)-induced human lung alveolar epithelial-like cell (A549) apoptosis and the underlying mechanisms. A549 cells were pretreated with different concentrations of STM for 2 hr and then cultured with or without PQ (700 µM) for 24 hr. Cell survival was determined using the CCK8 assay. Morphological changes, MDA content, inflammatory factors, fibrogenesis parameters, apoptosis rates, redox status and mitochondrial membrane potential (MMP) were evaluated. The expression of several genes involved in the modulation of redox status was measured by Western blotting. Cell viability and MMP were decreased, but the apoptosis rate and DCFH oxidation were elevated by PQ exposure. STM pretreatment notably increased cell viability and MMP and reduced the apoptosis rate and DCFH oxidation. Furthermore, TLR4- NOX4 signaling was significantly inhibited by STM. The downregulation of NOX4 by siRNA exerted the same protective effects as STM. This study provides the first evidence that STM attenuates PQ-induced pulmonary epithelial-like cell apoptosis via NOX4-mediated regulation of redox and mitochondrial function


Assuntos
Paraquat/efeitos adversos , Células Epiteliais Alveolares/classificação , RNA Interferente Pequeno/agonistas , NADPH Oxidase 4/efeitos adversos
3.
Free Radic Biol Med ; 193(Pt 2): 485-498, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36336232

RESUMO

Oxidative stress is a crucial mechanism in the pathophysiology of lung injury/fibrosis and diaphragmatic dysfunction. Yes-associated protein 1 (YAP1) is a key oxidative stress response regulator. However, how lung injury/fibrosis and the subsequent YAP1 silencing treatment affect diaphragmatic function remains largely uncharacterized. In this study, mice models of acute lipopolysaccharide (LPS) and paraquat exposure were used to establish acute lung injury and chronic pulmonary fibrosis. AT2 and C2C12 cells were co-cultured under LPS and paraquat challenge. YAP1 was interfered with shRNA given in vivo and verteporfin administration in vitro. Pulmonary histology, contractile properties, and cross-sectional areas (CSAs) of the diaphragm and gastrocnemius were evaluated. Histological and biochemical analyses were performed for targeted biomarker determination. We found that LPS and paraquat caused significant lung injury/fibrosis and significantly reduced the diaphragmatic-specific force and CSAs compared with the control. YAP1 silencing alleviated inflammatory cell infiltration or collagen deposition in the lungs yet worsened the already impaired diaphragmatic function by increasing inflammatory cytokines (IL-6 and TNF-α), mitochondrial reactive oxidative species (ROS) emission, protein degradation (Murf-1, atrogin-1, and calpain), and decreasing antioxidant capabilities (superoxide dismutase 2 and glutathione peroxidase). No significant improvements were observed in diaphragmatic function by transient YAP1 knockdown in the gastrocnemius. In vitro, LPS- or paraquat-caused cytotoxicity in AT2 cells was mostly alleviated by verteporfin in a concentration that was 20-fold higher than that in C2C12 cells (20 and 1 µg/mL, respectively). Finally, 0.5 µg/mL of verteporfin significantly ameliorated hydrogen peroxide-induced proteolytic activity and antioxidant enzyme suppression in C2C12 cells, whereas 2 µg/mL of verteporfin deteriorated the same. Collectively, lung injury/fibrosis adversely affects the diaphragm. YAP1 inhibition alleviates lung injury/fibrosis but worsens diaphragmatic function potentially by enhancing inflammatory cytokines and ROS-mediated protein degradation. This disparity might be attributed to differences in susceptibility to YAP1 inhibition between muscles and the lungs.


Assuntos
Lesão Pulmonar Aguda , Fibrose Pulmonar , Proteínas de Sinalização YAP , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Citocinas/metabolismo , Diafragma/metabolismo , Diafragma/fisiologia , Fibrose/genética , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Estresse Oxidativo/genética , Paraquat/efeitos adversos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Verteporfina/efeitos adversos , Verteporfina/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
4.
Biofabrication ; 15(1)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36223759

RESUMO

Paraquat (PQ) poisoning induces pulmonary fibrosisin vivo. The pathogenesis of pulmonary fibrosis is complex, which has prevented the development of specific treatments. Pulmonary fibrosis shows several characteristics including epithelial-mesenchymal transition (EMT), fibroblast activation, and extracellular matrix (ECM) deposition. To investigate pulmonary fibrosis, we designed a biomimetic multichannel micro-lung chip to imitate thein vivointerface between the lung epithelium and the lung interstitium. In our model, A549 (lung epithelial cells) and MRC-5 (fetal lung fibroblasts) cells were used to test the efficacy of our chip-based model. Rat tail type I collagen and hyaluronic acid were used to simulate ECM and to provide a 3D microenvironment. The micro-lung chips were cultured with PQ (0, 75, 150, 300, and 400µM). The viability of A549 and MRC-5 cells significantly decreased with increasing PQ concentrations. There were significant changes in surfactant proteins C (SP-C), alpha smooth muscle actin protein (α-SMA), and vimentin protein levels during PQ-induced pulmonary fibrosis. SP-C levels were decreased in A549 cells, while those ofα-SMA and vimentin were increased in A549 cells and MRC-5 cells treated with PQ in the micro-lung chip. We also designed a reference model without interaction between the lung epithelial cells and fibroblasts. Compared to the non-contact model, co-culturing A549 and MRC-5 cells in chips induced more severe EMT in A549 cells after treatment with 75µM PQ and together defended against PQ-induced damage. Thus, our novel co-culture micro-lung chip that models the lung epithelium and interstitium may provide a new approach for studying lung fibrosis and will facilitate drug development.


Assuntos
Paraquat , Fibrose Pulmonar , Animais , Ratos , Biomimética , Pulmão/metabolismo , Paraquat/efeitos adversos , Paraquat/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Vimentina/metabolismo , Células A549 , Humanos
5.
Oxid Med Cell Longev ; 2022: 3328623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720190

RESUMO

Paraquat (PQ) is a widely used herbicide but can be lethal to humans. The kidney is vital for PQ elimination; therefore, explorations for therapeutic approaches for PQ-induced acute kidney injury (AKI) are of great significance. Here, the effects of a natural bioactive polyphenol isorhapontigenin (ISO) on PQ-AKI were investigated. In vitro experiments carried out in PQ-intoxicated rat renal tubular epithelial cells (NRK-52E) showed that ISO treatment inhibited PQ-induced cell apoptosis and oxidative stress, which was evidenced by the decreased proapoptotic proteins [cleaved caspase 3/9 and poly (ADP-ribose) polymerase (PARP)], the reduced oxidative stress indicators [reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) leakage], and the increased antioxidants [superoxide dismutase (SOD), nuclear factor E2-related factor 2 (NRF2), and oxygenase-1 (HO-1)]. Furthermore, 50 mg/kg ISO pretreatment before PQ administration significantly attenuated PQ-AKI in rats, as manifested by the improved renal tubule damage, the reduced serum and urine markers of kidney injury, and the inhibited cell apoptosis and oxidative stress in the renal cortex. Furthermore, expression of sex-determining region Y box 9 (SOX9) and Toll-interacting protein (TOLLIP) in NRK-52E cells and the renal cortex was significantly upregulated after ISO treatment. Overexpression of SOX9 increased TOLLIP transcription and attenuated PQ-induced apoptosis and oxidative stress, whereas knockdown of SOX9 impaired the protective effects of ISO on NRK-52E cells against PQ toxicity. In conclusion, the present study demonstrated that ISO modulated SOX9/TOLLIP expression to attenuate cell apoptosis and oxidative stress in PQ-AKI, suggesting the potential of ISO in treating PQ-poisoned patients.


Assuntos
Injúria Renal Aguda , Paraquat , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Animais , Apoptose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estresse Oxidativo , Paraquat/efeitos adversos , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Estilbenos
6.
Oxid Med Cell Longev ; 2022: 3932070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345827

RESUMO

Methods: First, the purity of hAD-MSCs was determined by morphological observation and FCM, and the effects on the survival of paraquat-poisoned Sprague-Dawley rats were observed. All rats were randomly divided into three groups, defined as the sham control group (n = 8), model group (n = 15), and hAD-MSC-transplanted group (n = 17). Pneumonocyte damage and inflammatory cell infiltration were investigated in the three groups of rats, untreated control, paraquat only, and paraquat+hAD-MSC transplanted, using H&E staining. Fibrosis was investigated in three groups of rats using Masson's trichrome staining and Sirius red staining. The profibrotic factor TGF-ß1, the composition of fibrotic collagen HYP, and the hAD-MSC-secreted immunosuppressive factor HLA-G5 in serum were investigated in the three groups of rats using ELISA. Furthermore, the distribution of hAD-MSCs was investigated in the three groups of rats using immunohistochemistry and hematoxylin staining. Results: The hAD-MSCs exhibited typical hallmarks of MSCs, improved the state of being and survival of paraquat-poisoned rats, reduced both lung injury and inflammation, and inhibited the progression of pulmonary fibrosis by decreasing the deposition of collagen and the secretion of both TGF-ß1 and HYP. The hAD-MSCs could survive in damaged lungs and secreted appropriate amounts of HLA-G5 into the serum. Conclusion: The obtained results indicate that hAD-MSCs used to treat paraquat-induced lung injury may work through anti-inflammatory and immunosuppressive pathways and the downregulation of profibrotic elements. This study suggests that the transplantation of hAD-MSCs is a promising therapeutic approach for the treatment of paraquat-intoxicated patients.


Assuntos
Lesão Pulmonar Aguda , Fibrose Pulmonar , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Âmnio/metabolismo , Animais , Humanos , Paraquat/efeitos adversos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/terapia , Ratos , Ratos Sprague-Dawley
7.
Braz. J. Pharm. Sci. (Online) ; 58: e21600, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420496

RESUMO

Abstract Evaluation of montmorillonite for paraquat by in vitro and in vivo test. In vitro test were evaluated by a batch test, taking the paraquat concentration, adsorbents, reaction environment and time as indices, the absorption rate was screened by orthogonal design. In vivo test was executed with rabbits. Group 1: 4 rabbits dosed with montmorillonite. Group 2: 8 rabbits dosed with 200 mg/kg paraquat. Group 3: 6 rabbits dosed with 200 mg/kg paraquat then gavage with montmorillonite 5 min later. Group 4: 6 rabbits dosed with 200 mg/kg paraquat then gavage with montmorillonite 30 min later. Blood paraquat concentration, serum cytokines, blood gas analysis and histopathology of lung were implemented. In vitro test found that all the four factors influence the absorption rate of paraquat (P < 0.05). In vitro test found that oral montmorillonite could change toxicokinetics parameters of paraquat (P < 0.05); decrease raised serum TGF-ß1 and HMGB1 (P < 0.05) and alleviate the histopathology damage of lung. Montmorillonite might exert its protective effects on paraquat induced damage


Assuntos
Animais , Masculino , Coelhos , Paraquat/efeitos adversos , Intoxicação/patologia , Bentonita/agonistas , Técnicas In Vitro/métodos , Gasometria , Toxicocinética
8.
Plant Physiol ; 187(4): 2451-2468, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34599589

RESUMO

Plant glutathione S-transferases (GSTs) are glutathione-dependent enzymes with versatile functions, mainly related to detoxification of electrophilic xenobiotics and peroxides. The Arabidopsis (Arabidopsis thaliana) genome codes for 53 GSTs, divided into seven subclasses; however, understanding of their precise functions is limited. A recent study showed that class II TGA transcription factors TGA2, TGA5, and TGA6 are essential for tolerance of UV-B-induced oxidative stress and that this tolerance is associated with an antioxidative function of cytosolic tau-GSTs (GSTUs). Specifically, TGA2 controls the expression of several GSTUs under UV-B light, and constitutive expression of GSTU7 in the tga256 triple mutant is sufficient to revert the UV-B-susceptible phenotype of tga256. To further study the function of GSTU7, we characterized its role in mitigation of oxidative damage caused by the herbicide methyl viologen (MV). Under non-stress conditions, gstu7 null mutants were smaller than wild-type (WT) plants and delayed in the onset of the MV-induced antioxidative response, which led to accumulation of hydrogen peroxide and diminished seedling survival. Complementation of gstu7 by constitutive expression of GSTU7 rescued these phenotypes. Furthermore, live monitoring of the glutathione redox potential in intact cells with the fluorescent probe Grx1-roGFP2 revealed that GSTU7 overexpression completely abolished the MV-induced oxidation of the cytosolic glutathione buffer compared with WT plants. GSTU7 acted as a glutathione peroxidase able to complement the lack of peroxidase-type GSTs in yeast. Together, these findings show that GSTU7 is crucial in the antioxidative response by limiting oxidative damage and thus contributes to oxidative stress resistance in the cell.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Glutationa Transferase/genética , Herbicidas/efeitos adversos , Estresse Oxidativo , Paraquat/efeitos adversos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Glutationa Transferase/metabolismo
9.
Neuropharmacology ; 201: 108831, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655599

RESUMO

Parkinson's disease (PD), a common neurodegenerative disease is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The cause of dopaminergic loss in PD remains unknown for a long time, however, recent reports suggest oxidative stress plays a key role in the pathogenesis of PD. Paraquat (PQ), a widely used herbicide is an oxidative stress inducer that has been implicated as a potential risk factor for the development of PD. Flavonoids are naturally occurring polyphenolic compounds that display a variety of therapeutic properties against oxidative stress. Naringenin (NAR), a natural flavonoid, exhibits neuroprotection against PD-related pathology. However, studies on its neuroprotective role and the underlying mechanisms are scarce, therefore the present study explored the potential neuroprotective role of NAR in PQ-induced parkinsonism in SH-SY5Y cells and rat model. The effect of NAR on PQ-induced cellular toxicity was determined by measuring cell viability, oxidative stress, ATP levels and the same effect was determined by assessing behavioral, biochemical, immunohistochemical, qRT-PCR and Western blot in rat model. NAR treatment in SH-SY5Y cells resulted in increased cell viability, reduced oxidative stress, elevated mitochondrial membrane potential, and higher cellular ATP levels. In rats, NAR treatment resulted in significant neuroprotection against PQ-induced behavioral deficits, oxidative stress, mitochondrial dysfunction, and astrocytosis. NAR treatment significantly modulated PQ-induced mRNA expressions of DRD2, DAT, LRRK2, SNCA, ß-catenin, caspase-3, BDNF genes. NAR treatment increased TH protein expression and modulated its immunoreactivity in rat striatum. Also, GFAP decreased in response to NAR treatment. So, in the present study, NAR exhibits neuroprotection against PQ-induced neurotoxicity and neurodegeneration indicating its novel therapeutic potential against PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Flavanonas/farmacologia , Herbicidas/efeitos adversos , Fármacos Neuroprotetores , Paraquat/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Substância Negra/citologia , Substância Negra/patologia
10.
ACS Appl Mater Interfaces ; 13(39): 46431-46439, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34551515

RESUMO

Skin is exposed to ultraviolet radiation from the sun constantly, which may induce overproduction of reactive oxygen species (ROS) causing oxidative stress to cells and tissues. Enzymes and small molecules work together to maintain the redox homeostasis, among which superoxide dismutase (SOD) and catalase (CAT) are two kinds of most important antioxidants that suffer from the fragile nature of proteins. Moreover, the proportion of two enzymes used in products must be precisely controlled to reduce the damage caused by the toxic intermediate H2O2. Metal-organic frameworks (MOFs) are emerging as promising candidates for multiple enzyme encapsulation due to their high porosity, easy synthesis, and good biocompatibility. Herein, we developed enzyme-MOF composites, SC@ZIF-8, which exhibited an excellent antioxidative activity in vitro. Chemically protective cages formed by MOFs endow the encapsulated enzymes the long-term stability under unnatural conditions in cosmetic and biomedical materials. The pH-dependent protein release profile of SC@ZIF-8 facilitated the successful delivery of enzymes into the cytoplasm to scavenge toxic ROS. The nanocomposites protected human cells from paraquat-induced oxidative stress, paving a new path for the stable and efficient application of antioxidative enzymes in cosmetic and dermatological fields.


Assuntos
Antioxidantes/farmacologia , Catalase/farmacologia , Portadores de Fármacos/química , Imidazóis/química , Estruturas Metalorgânicas/química , Superóxido Dismutase/farmacologia , Portadores de Fármacos/síntese química , Células HeLa , Humanos , Imidazóis/síntese química , Estruturas Metalorgânicas/síntese química , Nanocompostos/química , Estresse Oxidativo/efeitos dos fármacos , Paraquat/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo
11.
Turk Patoloji Derg ; 37(3): 212-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514566

RESUMO

OBJECTIVE: The aim of the study is to do a clinicopathologic study of post mortem kidney biopsies with significant deposition of bilirubin pigment within tubular epithelial cells and in the lumen of distal tubules as a bile cast. MATERIAL AND METHOD: All post mortem specimens with acute tubular necrosis, with the presence of bile casts in tubules or bile pigment deposition in the tubular epithelium during the period 2015-2018 were examined for gross and histopathology along with biochemical parameters and viral markers. RESULTS: Bile casts with sloughed renal tubular epithelial cells and occasional macrophages were present in the distal convoluted tubule in 78.6% of biopsies (11/14). The plugging of distal convoluted tubule with casts was similar to that seen in myeloma and myoglobin cast nephropathies. Bilirubin pigment deposition was present in 35.7% (5/14) of cases. The frequency of bile casts in each biopsy was variable and it did not have any association with serum bilirubin levels or etiology of liver dysfunction. A striking difference from earlier studies is the high number of toxin-induced liver damage including six cases of paraquat and 2 cases of yellow phosphorus poisoning. CONCLUSION: This study proves importance of the bile cast nephropathy as a reason for kidney injury, especially with varied hepatotoxic etiologies, especially paraquat and yellow phosphorus.


Assuntos
Bile/metabolismo , Síndrome Hepatorrenal/diagnóstico , Nefropatias/patologia , Hepatopatias/patologia , Nefrose/patologia , Paraquat/efeitos adversos , Adolescente , Adulto , Idoso , Autopsia , Bilirrubina , Criança , Síndrome Hepatorrenal/sangue , Humanos , Pessoa de Meia-Idade , Nefrose/etiologia , Fósforo
12.
Biofactors ; 47(5): 778-787, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089284

RESUMO

Control rats were exposed to saline aerosol, two groups were exposed to paraquat (PQ), 27 (PQ-L) and 54 (PQ-H) mg/m3 aerosols and six groups were treated with carvacrol, 20 (C-L) and 80 (C-H) mg/kg/day, pioglitazone, 5 (Pio-L) and 10 (Pio-H) mg/kg/day, C-L+Pio-L and dexamethasone, 0.03 mg/kg/day, for 16 days after the end of exposure to PQ-H. Different variables were measured after the end of treatment period. Total and differential white blood cells counts, nitrite, malondialdehyde, interleukin (IL)-10, and interferon-gamma levels were significant increased, but thiol, superoxide dismutase, catalase, IL-17, and tumor necrosis factor alpha were decreased in the blood due to both doses of PQ (p < 0.05-p < 0.001). Most measured parameters were significantly improved in treated groups with both doses of carvacrol, pioglitazone, the combination of C-L+Pio-L and dexamethasone compared to PQ-H group (p < 0.05-p < 0.001). Treatment with C-L+Pio-L showed significantly higher effects compared to each one alone (p < 0.05-p < 0.001). Systemic oxidative stress and inflammation due to inhaled PQ were improved by carvacrol and pioglitazone. Higher effects of C-L+Pio-L than each one alone suggests carvacrol modulating PPAR-γ receptors.


Assuntos
Cimenos/farmacologia , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/efeitos dos fármacos , Paraquat/administração & dosagem , Paraquat/efeitos adversos , Administração por Inalação , Animais , Modelos Animais de Doenças , Herbicidas/administração & dosagem , Herbicidas/efeitos adversos , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
13.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064677

RESUMO

Over the last decade, the knowledge in extracellular vesicles (EVs) biogenesis and modulation has increasingly grown. As their content reflects the physiological state of their donor cells, these "intercellular messengers" progressively became a potential source of biomarker reflecting the host cell state. However, little is known about EVs released from the human brain microvascular endothelial cells (HBMECs). The current study aimed to isolate and characterize EVs from HBMECs and to analyze their EVs proteome modulation after paraquat (PQ) stimulation, a widely used herbicide known for its neurotoxic effect. Size distribution, concentration and presence of well-known EV markers were assessed. Identification and quantification of PQ-exposed EV proteins was conducted by data-independent acquisition mass spectrometry (DIA-MS). Signature pathways of PQ-treated EVs were analyzed by gene ontology terms and pathway enrichment. Results highlighted that EVs exposed to PQ have modulated pathways, namely the ubiquinone metabolism and the transcription HIF-1 targets. These pathways may be potential molecular signatures of the PQ-induced toxicity carried by EVs that are reflecting their cell of origin by transporting with them irreversible functional changes.


Assuntos
Encéfalo/metabolismo , Endotélio Vascular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Paraquat/efeitos adversos , Proteoma/metabolismo , Ubiquinona/metabolismo , Biomarcadores/análise , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Vesículas Extracelulares , Herbicidas/efeitos adversos , Humanos , Proteoma/análise , Proteoma/efeitos dos fármacos
14.
Oxid Med Cell Longev ; 2021: 8842926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959216

RESUMO

Oxidative stress results when the production of oxidants outweighs the capacity of the antioxidant defence mechanisms. This can lead to pathological conditions including cancer and neurodegeneration. Consequently, there is considerable interest in compounds with antioxidant activity, including those from natural sources. Here, we characterise the antioxidant activity of three novel peptides identified in protein hydrolysates from the sea cucumber Apostichopus japonicus. Under oxidative stress conditions, synthetic versions of the sea cucumber peptides significantly compensate for glutathione depletion, decrease mitochondrial superoxide levels, and alleviate mitophagy in human neuroblastoma cells. Moreover, orally supplied peptides improve survival of the Caenorhabditis elegans after treatment with paraquat, the latter of which leads to the production of excessive oxidative stress. Thus, the sea cucumber peptides exhibit antioxidant activity at both the cellular and organism levels and might prove attractive as nutritional supplements for healthy ageing.


Assuntos
Neuroblastoma/fisiopatologia , Paraquat/efeitos adversos , Peptídeos/metabolismo , Animais , Neuroblastoma/mortalidade , Estresse Oxidativo , Pepinos-do-Mar , Análise de Sobrevida
15.
Plant Physiol ; 186(1): 125-141, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33793922

RESUMO

Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Arabidopsis/efeitos dos fármacos , Técnicas Biossensoriais , Cloroplastos/efeitos dos fármacos , Herbicidas/efeitos adversos , Oxirredução , Paraquat/efeitos adversos , Plântula/efeitos dos fármacos , Plântula/metabolismo
16.
Sci Rep ; 11(1): 8129, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854134

RESUMO

Exposed rats to normal saline and paraquat (PQ) aerosol as control and PQ group, rats exposed to PQ and treated with 20 and 80 mg/kg/day carvacrol, 5 and 10 mg/kg/day pioglitazone, low dose of pioglitazone + carvacrol and 0.03 mg/kg/day dexamethasone (Dexa) for 16 days after the end of PQ exposure were studied (n = 6 in each group). Lung pathological changes, tracheal responsiveness to methacholine and ovalbumin (OVA) as well as transforming growth factor beta (TGF-ß) and interleukin (IL)-6 level in the lung tissue homogenize as well as TGF-ß, IL-6, oxidant and antioxidant levels oxidant and antioxidants were increased in PQ group (p < 0.01 to p < 0.001). Lung pathological changes, tracheal responsiveness to methacholine and OVA as well as TGF-ß, IL-6 oxidant and antioxidant levels were improved in all treated groups except lung pathological changes in treated group with low dose of pioglitazone (p < 0.05 to p < 0.001). The effects of low dose of pioglitazone and carvacrol alone were significantly lower than in the combination group of low dose of pioglitazone + carvacrol (p < 0.05 to p < 0.001). Carvacrol treatment improved inhaled PQ-induced lug injury similar to the effects of dexamethasone. The synergic effect of carvacrol and pioglitazone suggests PPAR-γ receptor mediated effects of carvacrol on inhaled PQ-induced lung injury.


Assuntos
Cimenos/administração & dosagem , Dexametasona/administração & dosagem , Lesão Pulmonar/tratamento farmacológico , Paraquat/efeitos adversos , Pioglitazona/administração & dosagem , Animais , Estudos de Casos e Controles , Cimenos/farmacologia , Dexametasona/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/imunologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Pioglitazona/farmacologia , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190737, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678021

RESUMO

Social insect reproductives exhibit exceptional longevity instead of the classic trade-off between somatic maintenance and reproduction. Even normally sterile workers experience a significant increase in life expectancy when they assume a reproductive role. The mechanisms that enable the positive relation between the antagonistic demands of reproduction and somatic maintenance are unclear. To isolate the effect of reproductive activation, honeybee workers were induced to activate their ovaries. These reproductively activated workers were compared to controls for survival and gene expression patterns after exposure to Israeli Acute Paralysis Virus or the oxidative stressor paraquat. Reproductive activation increased survival, indicating better immunity and oxidative stress resistance. After qPCR analysis confirmed our experimental treatments at the physiological level, whole transcriptome analysis revealed that paraquat treatment significantly changed the expression of 1277 genes in the control workers but only two genes in reproductively activated workers, indicating that reproductive activation preemptively protects against oxidative stress. Significant overlap between genes that were upregulated by reproductive activation and in response to paraquat included prominent members of signalling pathways and anti-oxidants known to affect ageing. Thus, while our results confirm a central role of vitellogenin, they also point to other mechanisms to explain the molecular basis of the lack of a cost of reproduction and the exceptional longevity of social insect reproductives. Thus, socially induced reproductive activation preemptively protects honeybee workers against stressors, explaining their longevity. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Abelhas/fisiologia , Dicistroviridae/fisiologia , Expressão Gênica , Oxidantes/efeitos adversos , Paraquat/efeitos adversos , Estresse Fisiológico , Animais , Feminino , Perfilação da Expressão Gênica , Ovário/fisiologia , Reprodução/fisiologia , Sobrevida/fisiologia
18.
J Burn Care Res ; 42(5): 1026-1029, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33769492

RESUMO

Paraquat is used throughout the world as an herbicide due to its efficacy and relative safety with proper handling. Accidents and misuse still occur, leading to countries banning its use or employing extra safeguards and special handling certifications. Severe toxicity is primarily associated with ingestion, but skin exposure leads to corrosive injury to the dermis, occurs rapidly, and progresses for up to 24 h. Prolonged skin exposure or the presence of open wounds can lead to systemic absorption. This is the first known report of burn injury and treatment due to secondary exposure to the urine of a patient who had accidental ingestion of paraquat. A 50-year-old Caucasian male presented to the emergency room after accidental ingestion of eight ounces of Gramoxone extra (Paraquat 30% concentration). During the initial care of the patient, the bedside registered nurse was placing an indwelling foley catheter when her forearms were contaminated with urine while wearing basic personal protective equipment (gloves). The registered nurse noticed bullae to bilateral forearms a short time after exposure to the urine. She presented to the burn center for evaluation and treatment. Poison Control was contacted but was unable to offer advise due to a lack of supportive literature. The risk and effects of primary exposure to Paraquat is described throughout the literature and documented in Material Safety Data Sheets (MSDS), but data regarding risk and treatment of secondary exposure is lacking. This case will aid outreach efforts for the prevention and treatment of burn injuries from secondary exposure to paraquat.


Assuntos
Acidentes de Trabalho , Queimaduras Químicas/terapia , Exposição Ocupacional/efeitos adversos , Paraquat/efeitos adversos , Queimaduras Químicas/etiologia , Feminino , Humanos , Pessoa de Meia-Idade , Fatores de Risco , Local de Trabalho
19.
Neurobiol Aging ; 100: 11-21, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450723

RESUMO

The primary motor symptoms of Parkinson's disease (PD) result from the degeneration of dopamine-producing neurons of the substantia nigra pars compacta (SNc), and often, the loss is asymmetrical, resulting in unilateral tremor presentation. Notably, age is the primary risk factor for PD, and it is likely that the disease ultimately stems from the impact of environmental factors, which interact with the aging process. Recent research has focused on the role of microglia and pro-oxidative responses in dopaminergic neuronal death. In this study, we sought to examine the neurodegenerative, inflammatory, and stress effects of exposure to the etiologically relevant pesticide, paraquat, over time (up to 6 months after injections). We also were interested in whether a high-resolution, 7-Tesla animal magnetic resonance imaging would be sensitive enough to detect the degenerative impact of paraquat. We found that paraquat induced a loss of dopaminergic SNc neurons and activation of microglia that surprisingly did not change over 6 months after the last injection. A long-lasting reduction was evident for body weight, and alterations in organ (lung and heart) weight were evident, which reflect the peripheral impact of the toxicant. The microglial proinflammatory actin-remodeling factor, WAVE2, along with the inflammatory transcription factor, nuclear factor kappa B were also elevated within the brain. Remarkably, the stress hormone, corticosterone, was still significantly elevated 1 month after paraquat, whereas the inflammasome factor, caspase-1, and antigen presentation factor, MFG-E8, both displayed delayed rises after the 6-month time. Using high-resolution magnetic resonance imaging, we detected no striatal changes but modest hemispheric differences in the SNc and time-dependent volumetric enlargement of the ventricles in paraquat-treated mice. These data suggest that paraquat induces long-term nigrostriatal pathology (possibly asymmetric) and inflammatory changes and stress and trophic/apoptotic effects that appear to either increase with the passage of time or are evident for at least 1 month. In brief, paraquat may be a useful nonspecific means to model widespread stress and inflammatory changes related to PD or age-related disease in general, but not the progressive nature of such diseases.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Paraquat/efeitos adversos , Doença de Parkinson/etiologia , Praguicidas/efeitos adversos , Fatores Etários , Animais , Antígenos de Superfície/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 1/metabolismo , Corticosterona/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamação , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Leite/metabolismo , NF-kappa B/metabolismo , Doença de Parkinson/diagnóstico por imagem , Proteínas de Protozoários , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
20.
Cell Stress Chaperones ; 26(1): 229-239, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078332

RESUMO

Oxidative stress is one of the major and continuous stresses, an organism encounters during its lifetime. Tissues such as the brain, liver and muscles are more prone to damage by oxidative stress due to their metabolic activity, differences in physiological and adaptive processes. One of the defence mechanisms against continuous oxidative stress is a set of small heat shock proteins. αB-Crystallin/HSPB5, a small heat shock protein, gets upregulated under stress and acts as a molecular chaperone. In addition to acting as a molecular chaperone, HSPB5 is shown to have a role in other cytoprotective functions such as inhibition of apoptosis, prevention of oxidative stress and stabilisation of cytoskeletal system. Such protection in vivo, at the organism level, particularly in a tissue-dependent manner, has not been investigated. We have expressed HSPB5 in fat body (liver), neurons and specifically in dopaminergic and motor neurons in Drosophila and investigated its protective effect against paraquat-induced oxidative stress. We observed that expression of HSPB5 in neurons and fat body confers protection against paraquat-induced oxidative stress. Expression in dopaminergic neurons showed a higher protective effect. Our results clearly establish the protective ability of HSPB5 in vivo; the extent of protection, however, varies depending on the tissue in which it is expressed. Interestingly, neuronal expression of HSPB5 resulted in an improvement in negative geotropic behaviour, whereas specific expression in muscle tissue did not show such a beneficial effect.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/efeitos dos fármacos , Herbicidas/efeitos adversos , Paraquat/efeitos adversos , Cadeia B de alfa-Cristalina/metabolismo , Animais , Drosophila/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...